Turbulence  Friend or Foe? Here's a lot of Aero info, not spread in several threads
Rather than sporadically give information in posts... Let me take a moment to explain a few things with respect to aerodynamics, cD and a few terms that go with that.... Basically, I'm about to regurgitate some of the concepts you might learn in a fluid mechanics course (but minimizing the math component)
First, some definitions Reynolds number: a ratio between the inertial forces (momentum of the working fluid) to viscous forces (property of resistance to shearing)  dependent on: body length, fluid velocity, fluid density, dynamic fluid viscosity, kinematic fluid viscosity. Frictional Drag: this is the drag between the moving fluid and relativity stationary surface. May be referred to as viscous drag  I'll switch back of forth most likely. This value is dependent/sensitive on the Reynolds number. Pressure Drag: this is the drag as a result of a pressure drop  wake. Think of that big blast of wind from a semi truck, or the waves generated by a boat. Pressure drag is mildly dependent on the Reynolds number, but generally not sensitive to it. Pressure drag is highly sensitive to body shape. For both Frictional and Pressure drag.... It's important to note that they are both VERY dependent on fluid viscosity. That is, in inviscid (viscosity = 0) flow, both of drop to 0. AoA: Angle of attack  draw a line in parallel to fluid flow. Now draw a line from the leading edge of a body to the trailing edge. Measure the angle between these two lines. Streamlined Body: Drag losses are primarily due to viscous losses. Streamlined bodies of the same thickness are significantly more aerodynamic than a bluff body. Note that a streamlined shape doesn't necessarily mean a streamlined body  at a high AoA, flow separation causes great pressure drops. Bluff Body: Drag losses at high Reynolds numbers are primarily due to momentum losses  meaning, pressure drop as a result of a wake. Free Stream: This is the flow that is not impeded by a body. Boundary Layer: I can spend a lot of time on this, but I'll abridge it... The boundary layer is the fluid directly beside the body. The general profile of the boundary looks something like this: https://history.nasa.gov/SP4103/p529.jpg where the length of the lines represent a velocity vector  the longer the line, the faster the flow. At the point where the fluid meets the body, there is a zero slip condition. That is, at this point the fluid does not move. There are some important implications of this as it applies to differential calculus  but don't worry about that, just understand this concept ;) Below is the shape of the boundary layer (note that the y scale is increased for easier reading): https://www.cartage.org.lb/en/themes/...s/img00032.gif Note the several phases of the boundary layer:
https://history.nasa.gov/SP4103/p530.jpg Laminar Flow: Fluid "layers" (streamlines) flow over each other in a parallel fashion smoothly over each other. Transitional Flow: This is more of a mathematical zone as laminar turns into turbulent. I call it mathematical because there are specialized equations that apply to transitional flow only. Turbulent Flow: The streamlines, instead of slipping over each other, diverge in chaotic eddies. Note that chaotic does not mean random, it "simply" means that it is highly dependent on initial flow conditions  small changes in these conditions create great differences in output. Please note, there is no critical distinction between laminar, transitional and turbulent flow. The mathematical distinction is almost arbitrary  it's just a number that the community has agreed to use :thumbup: Okay, I think that just about covers some minimal basics  if I make any knowledge assumptions, please let me know and I'll elaborate :thumbup: :thumbup: I'm going to talk about bluff bodies for the most part as that's what our cars are (with exceptions  basjoos!). So lets look at some simple objects and what happens.... A cylinder is a classic example: https://www.flometrics.com/services/cylinder/cylslo.jpg So, the flow in the front is generally nice, even and laminar. But downstream, there's some nasty eddies. The large vorticies off of a cylinder have their own natural frequency dependent on fluid velocity and cylinder diameter  coming at regular intervals. These remove energy from the body. The wake of a body typically has this same eddying motion, but not necessarily at a consistent frequency. This is actually a VERY important phenomena as if this frequency matches the natural frequency of the cylinder (think a street lamp pole), the cylinder will vibrate divergently and without control, eventually self destruct. This is why many light poles, especially in wind prone areas, are tapered. Additionally, power lines may have spoilers and damping mechanisms attached. Even large sky scrapers have vibration control for wind induced motion  one method uses VERY heavy weights (think tons) on the top floor of the building; given a certain wind speed, oil is pumped under the weights so they can move (constrained and attached to the structure by springs)... How about a sphere? https://www.princeton.edu/~asmits/Bic...R_combined.GIF The sphere on the left (a) shows what happens with laminar flow. As soon as the pressure drop becomes significant you get separation, bugger. So what's the deal with the picture on the right? How did we delay separation? That sphere has a trip wire. What does a trip wire do? It perturbs the boundary layer, a lot. Enough so that nearly the entire boundary layer in contact with the sphere is turbulent. So how does this change cD? Here's some graphics: https://www.princeton.edu/~asmits/Bic...oefficient.GIF cD versus Reynolds # https://www.princeton.edu/~asmits/Bic...w_patterns.GIF Points on the graph above correspond to the letters below each case. "Whoa Whoa Whoa!! Are you telling me cD changes with velocity?" Yes, yes I am  but don't get too excited as this mainly applies to small objects. cD drops significantly as the Re# increases. BUT, it remains nearly constant for large Re#'s in the laminar region and approaches a constant value after the transitional region. As a car is very wide compared to something like a tennis ball, the Reynolds number is high  very high in fact (on order of 10^6 @ 55mph and 10^5 at ~3mph). Balls! Sports balls, believe it or not, have some great design... Smooth balls are not very efficient aerodynamically. This is why golf balls have dimples, tennis balls have fuzz, cricket balls have a stubby seam, baseballs have stitches, American footballs are textured, soccer balls have seams (Everywhere). Okay, some of this is traditional  but it still plays a role. https://www.princeton.edu/~asmits/Bic.../roughness.GIF Roughness and cD... Having a bit of roughness induces turbulence. Look at the photo above of the sphere with the trip wire  surface roughness is very similar, in effect, to a trip wire. This results in a reduction of cD as shown in the above graph (which just so happens to also be in my fluid mechanics book  Fundamentals of Fluid Mechanics produced by John Wiley & Sons :p). Relative roughness is t/D, t being the thickness of "rough" and D being the diameter of a sphere/cylinder. The dashed line on the left is a golf ball. And on the subject of golf balls... why? The dimples! Why? The dimples act, in effect, like a trip wire. They promote a transition to turbulent flow. By doing so, we get higher skin friction (yet another name for viscous losses). BUT, remember the definition of a bluff body? A golf ball is a sphere  and spheres are bluff bodies. Most of their losses come from the wake  so if we can move the wake further back, we can reduce the wake size and reduce the losses from the wake. It just so happens that by increasing the turbulence, you decrease your drag by reducing where most of the drag is coming from  flow separation (wake).  Okay, so what's all of this talk about the benefits of turbulent flow? Turbulence is the most misunderstood concept with regards to aerodynamics, in my opinion. Nature has known for millions of years of the benefits of turbulence. This is why dermal denticles on sharks help lower their cD. Likewise the bumpy tubercles of a whale fin. etc. https://www.whalepower.com/drupal/fil...mpback_fin.jpg The key difference between induced turbulence and the turbulence as a result of a shape is the size. Larger eddies, swirls, etc. contain more energy than smaller ones. So if we induce smaller eddies, with a small amount of energy  we move into the turbulent regime without a whole lot of loss that you'd typically associate with the word "turbulence". This will typically be referred to as "energizing the boundary layer." This can happen on a very VERY small scale  the smallest of which is the Kolmogorov micro scale. < keep in mind that the mathematic description of turbulence is not solved  we just can't do it, yet :p Some very notable physicist when asked what they would like to ask God have replied: Werner Heisenberg: "When I meet God, I am going to ask him two questions: Why relativity? And why turbulence? I really believe he will have an answer for the first." Horace Lamb: "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about the former I am rather optimistic." ^^both of these were mentioned in my lectures :p  Vortex Generators..... Okay, so I've been building up to this as it has come up a lot recently  trying to give some background before I get to it. Here's the answer to some straightforward (I hope) questions: 1. Does it increase turbulence? Yes  the idea is, move the wake back with turbulent flow 2. Does it reduce cD? The devil's in the details. Properly applied, absolutely yes. Nature has proven this through millions of years of evolutionary change. CFD and tunnel testing too :p 3. wtf counts as a vortex generator? Almost anything that perturbs flow  from commercially sold tabs to dimples to stiff fuzz (think tennis ball). Vortex Generator does not necessarily refer to one particular product (nor do I endorse any such product). 4. How much improvement? See #2  Mitsubishi has published a paper reporting a cD reduction of 6 points (.006) on a Lancer which can be considered significant in the cD world. They used delta wing type vortex generators placed 100mm in front of the predicted separation point: https://www.primitiveengineering.com/..._effect_vg.jpg https://www.primitiveengineering.com/...vortex_top.jpg Note the smaller wake size and how the separation point is further down the rear glass: https://www.primitiveengineering.com/...ex_gen_cfd.jpg Whew, freeking long.... Questions/additions? Let me know if I missed a typo too :) 
Good read, trebuchet! Thanks for the "scoop" on aerodynamics, lol.

Tubulence  Friend or Foe?
Tubulence. Is this effect brought about by sitting down in the bathtub too fast? 
Quote:

Excellent writeup!
I vote to stickify it... RH77 
Quote:
But how embarrassing, a critical spelling error in the title :o 
One thing I have to wonder... if vortex generators are so great, why aren't they on the back of the insight, the prius, the UFEIII, the VW 1 litre car, etc. etc? I know length is a constraint, but given the same length, why wouldn't they attempt to drop the rear at a steeper angle and add some VGs, that way they could decrease the size of the wake still further, if it were possible.

Good stuff!
I think I'm seeing a Karmann vortex that's formed at the back of the car in the graphic that's labeled '(a)With VG' while the car '(b)without VG' doesn't show signs of a Karman vortex. Do you see it too? Does it mean anything? Is that a good thing or not? 
Quote:
I dug around autospeed a little more, and found some more information :p https://www.autospeed.com/cms/A_3061/article.html. They specifically tested the air tab product and they did have promising results  similar, in effect to my tuft testing while behind a semi. Quote:
Quote:
https://www.princeton.edu/~asmits/Bic...w_patterns.GIF ^center image (c) I think that little downward tail has something to do with the upward curve (compared to photo (b)) and the faster moving flow above it (in yellow  compared to the slower green in (b)). It would be nice to see a few frames to get an idea of the bigger picture there :) 
Very nice writeup.

All times are GMT 8. The time now is 02:24 AM. 
Powered by vBulletin® Version 3.8.8 Beta 1
Copyright ©2000  2022, vBulletin Solutions, Inc.